Abstract

The numerical simulation of biocomposites consisting of zirconia-based ceramics and cortical bone was performed with the use of a multilevel approach. The mechanical properties of the ceramic biocomposite were determined. The evolution of mesoscopic stress distributions in the biocomposite components during the process of its deformation was investigated, taking into account damage accumulation up to the fulfillment of the macro strength criterion. It is shown that damage accumulation has an impact on the stress distribution laws at the mesoscopic level, which is manifested through the appearance of a threshold for the stress distribution, as well as through a significant decrease in the distribution amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.