Abstract

The “Phase-Field Model of Dislocations” (PFMD) was used to simulate shearing of gamma-prime precipitate arrays in single crystal turbine blade superalloys. The focus of the work has been on the cutting of the L12 ordered precipitates by a<112>{111} dislocation ribbons during Primary Creep. The Phase Field Model presented incorporates specially developed Generalised Stacking Fault Energy (–surface) data obtained from atomistic simulations. The topography of this surface determines the shearing mechanisms observed in the model. The merit of the new –surface, is that it accounts for the formation of extrinsic stacking faults, making the model more relevant to creep deformation of superalloys at elevated temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.