Abstract
In this paper, the structural genome approach is used for multiscale analyses to predict the mechanical and thermal properties of particle reinforced hydrogel composites. First, the structure genome model of particle reinforced hydrogel composites is created by the random sequential adsorption algorithm. Then the mechanical properties and equivalent thermal conductivity of hydrogel composites are numerically studied by the structural genome approach. The effects of particles with different volume fractions and material properties on their mechanical and thermal properties are investigated. From the simulation results, it can be found that within a certain range of volume fraction, the mechanical properties and equivalent thermal conductivity of hydrogel composites are positively correlated with the volume fractions of particles. We also find that with the increase of the mechanical properties and thermal conductivity of particles, the properties of hydrogel can be improved and eventually reach stabilization. The structural genome approach shows excellent efficiency in multiscale structure analysis. It is a convenient method for the simulation of complex soft material composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.