Abstract

The mutant matrilineal (mtl) gene encoding patatin-like phospholipase activity is involved in in-vivo maternal haploid induction in maize. Doubling of chromosomes in haploids by colchicine treatment leads to complete fixation of inbreds in just one generation compared to 6–7 generations of selfing. Thus, knowledge of patatin-like proteins in other crops assumes great significance for in-vivo haploid induction. So far, no online tool is available that can classify unknown proteins into patatin-like proteins. Here, we aimed to optimize a machine learning-based algorithm to predict the patatin-like phospholipase activity of unknown proteins. Four different kernels [radial basis function (RBF), sigmoid, polynomial, and linear] were used for building support vector machine (SVM) classifiers using six different sequence-based compositional features (AAC, DPC, GDPC, CTDC, CTDT, and GAAC). A total of 1170 protein sequences including both patatin-like (585 sequences) from various monocots, dicots, and microbes; and non-patatin-like proteins (585 sequences) from different subspecies of Zea mays were analyzed. RBF and polynomial kernels were quite promising in the prediction of patatin-like proteins. Among six sequence-based compositional features, di-peptide composition attained > 90% prediction accuracies using RBF and polynomial kernels. Using mutual information, most explaining dipeptides that contributed the highest to the prediction process were identified. The knowledge generated in this study can be utilized in other crops prior to the initiation of any experiment. The developed SVM model opened a new paradigm for scientists working in in-vivo haploid induction in commercial crops. This is the first report of machine learning of the identification of proteins with patatin-like activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.