Abstract

Orthotropic composite pressure vessels are designed based on considering the role of a matrix in the force balance of the structure and its leakage due to matrix failure. To be more specific, the stress and strain states of the shell are considered simultaneously in both longitudinal and transverse directions of the fiber. Due to such a loaded condition, the laminate thickness prediction of the shell does not use the maximum stress criterion as with the traditional monotropic composite vessels but rather the multi-axial failure criterion of the composite material. With the developed and published platforms on the design of the dome profile of the composite vessel, this paper focuses on predicting the laminate thickness of the geodesic wound dome of the pressure vessel according to Tsai-Wu failure criteria, simultaneously the material thickness distribution on the dome as a basis for determining structural parameters of the vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.