Abstract

Hybrid machining is a combination of conventional with the non-conventional process or two non-conventional processes. In the present work, an attempt has been made to combine hot air with a conventional cutting tool to form a novel Hot Air Assisted Hybrid Machining (HAAHM) for the machining of soda-lime-silica glass. The mathematical model for the Material Removal Rate (MRR) and Surface Roughness (Ra) using Regression Analysis (RA) and the Artificial Neural Network (ANN) models has been developed for the grooving process. The deviation of 8.24% and 7.70% were found in the prediction of MRR and Ra by regression analysis and the deviation of 1.89% and 1.70% for MRR and Ra using an artificial neural network model. The deviation between the predicted and the experimental results of both the models are found to be within the permissible limit. Higher predictive capabilities were observed in ANN model than the regression model. However, both models demonstrated good agreement with the MRR of soda-lime-silica glass by this hybrid machining process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.