Abstract
Metal based additive manufacturing techniques such as laser powder bed fusion can produce parts with complex designs as compared to traditional manufacturing. The quality is affected by defects such as porosity or lack of fusion that can be reduced by online control of manufacturing parameters. The conventional way of testing is time consuming and does not allow the process parameters to be linked to the mechanical properties. In this paper, ultrasound data along with supervised learning is used to estimate the manufacturing parameters of 316L steel samples. The steel samples are manufactured with varying process parameters (speed, hatch distance and power) in two batches that are placed at different locations on the build plate. These samples are examined with ultrasound using a focused transducer. The ultrasound scans are performed in a dense grid in the build and transverse direction, respectively. Part of the ultrasound data are used to train a partial least squares regression algorithm by labelling the data with the corresponding manufacturing parameters (speed, hatch distance and power, and build plate location). The remaining data are used for testing of the resulting model. To assess the uncertainty of the method, a Monte-Carlo simulation approach is adopted, providing a confidence interval for the predicted manufacturing parameters. The analysis is performed in both the build and transverse direction. Since the material is anisotropic, results show that there are differences, but that the manufacturing parameters has an effect of the material microstructure in both directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.