Abstract

Abstract The coefficient of Manning's roughness (n) has been generally implemented in the determination of depth and discharge in open channels and canals. This study unravels the novel idea and potential of Random Forest (RF), M5P, and Random Tree (RT) approaches to evaluate and predict the coefficient of Manning's roughness for hydraulic designing. To achieve this purpose, 42 observations were collected for high-gradient streams in Colorado, USA. All the observations were from boulder-bed, cobble and high gradient (S > 0.002 m/m) streams within bank flows. In order to ascertain the best model, the above-mentioned approaches were evaluated and compared using performance evaluation indices such as mean absolute error (MAE), coefficient of correlation (CC), and root mean square error (RMSE). Outcomes of performance evaluation indices revealed that the proposed pruned M5P approach outperformed other applied models for predicting the coefficient of Manning's roughness for hydraulic designing with CC = 0.7858, 0.7910, RMSE = 0.0195, 0.0195, and MAE = 0.0157, 0.0165 for model development and validation period, correspondingly. Furthermore, Taylor diagram and Box plot also suggest that the M5P based approach works better than RF and RT based approaches for predicting the coefficient of Manning's roughness for high-gradient streams using the given data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.