Abstract

BackgroundCurrent malaria diagnosis methods that rely on microscopy and Histidine Rich Protein-2 (HRP2)-based rapid diagnostic tests (RDT) have drawbacks that necessitate the development of improved and complementary malaria diagnostic methods to overcome some or all these limitations. Consequently, the addition of automated detection and classification of malaria using laboratory methods can provide patients with more accurate and faster diagnosis. Therefore, this study used a machine-learning model to predict Plasmodium falciparum (Pf) antigen positivity (presence of malaria) based on sociodemographic behaviour, environment, and clinical features.MethodData from 200 Nigerian patients were used to develop predictive models using nested cross-validation and sequential backward feature selection (SBFS), with 80% of the dataset randomly selected for training and optimisation and the remaining 20% for testing the models. Outcomes were classified as Pf-positive or Pf-negative, corresponding to the presence or absence of malaria, respectively.ResultsAmong the three machine learning models examined, the penalised logistic regression model had the best area under the receiver operating characteristic curve for the training set (AUC = 84%; 95% confidence interval [CI]: 75–93%) and test set (AUC = 83%; 95% CI: 63–100%). Increased odds of malaria were associated with higher body weight (adjusted odds ratio (AOR) = 4.50, 95% CI: 2.27 to 8.01, p < 0.0001). Even though the association between the odds of having malaria and body temperature was not significant, patients with high body temperature had higher odds of testing positive for the Pf antigen than those who did not have high body temperature (AOR = 1.40, 95% CI: 0.99 to 1.91, p = 0.068). In addition, patients who had bushes in their surroundings (AOR = 2.60, 95% CI: 1.30 to 4.66, p = 0.006) or experienced fever (AOR = 2.10, 95% CI: 0.88 to 4.24, p = 0.099), headache (AOR = 2.07; 95% CI: 0.95 to 3.95, p = 0.068), muscle pain (AOR = 1.49; 95% CI: 0.66 to 3.39, p = 0.333), and vomiting (AOR = 2.32; 95% CI: 0.85 to 6.82, p = 0.097) were more likely to experience malaria. In contrast, decreased odds of malaria were associated with age (AOR = 0.62, 95% CI: 0.41 to 0.90, p = 0.012) and BMI (AOR = 0.47, 95% CI: 0.26 to 0.80, p = 0.006).ConclusionNewly developed routinely collected baseline sociodemographic, environmental, and clinical features to predict Pf antigen positivity may be a valuable tool for clinical decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call