Abstract
Maize is a widely grown crop in China, and the relationships between agroclimatic parameters and maize yield are complicated, hence, accurate and timely yield prediction is challenging. Here, climate, satellite data, and meteorological indices were integrated to predict maize yield at the city-level in China from 2000 to 2015 using four machine learning approaches, e.g., cubist, random forest (RF), extreme gradient boosting (Xgboost), and support vector machine (SVM). The climate variables included the diffuse flux of photosynthetic active radiation (PDf), the diffuse flux of shortwave radiation (SDf), the direct flux of shortwave radiation (SDr), minimum temperature (Tmn), potential evapotranspiration (Pet), vapor pressure deficit (Vpd), vapor pressure (Vap), and wet day frequency (Wet). Satellite data, including the enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and adjusted vegetation index (SAVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), were used. Meteorological indices, including growing degree day (GDD), extreme degree day (EDD), and the Standardized Precipitation Evapotranspiration Index (SPEI), were used. The results showed that integrating all climate, satellite data, and meteorological indices could achieve the highest accuracy. The highest estimated correlation coefficient (R) values for the cubist, RF, SVM, and Xgboost methods were 0.828, 0.806, 0.742, and 0.758, respectively. The climate, satellite data, or meteorological indices inputs from all growth stages were essential for maize yield prediction, especially in late growth stages. R improved by about 0.126, 0.117, and 0.143 by adding climate data from the early, peak, and late-period to satellite data and meteorological indices from all stages via the four machine learning algorithms, respectively. R increased by 0.016, 0.016, and 0.017 when adding satellite data from the early, peak, and late stages to climate data and meteorological indices from all stages, respectively. R increased by 0.003, 0.032, and 0.042 when adding meteorological indices from the early, peak, and late stages to climate and satellite data from all stages, respectively. The analysis found that the spatial divergences were large and the R value in Northwest region reached 0.942, 0.904, 0.934, and 0.850 for the Cubist, RF, SVM, and Xgboost, respectively. This study highlights the advantages of using climate, satellite data, and meteorological indices for large-scale maize yield estimation with machine learning algorithms.
Highlights
The global demand for the use of agricultural crops as food, feed, and bioenergy will continue to grow in the coming decades [1]
A variety of methods mainly based on crop growth models and empirical models have been constructed in relevant studies to predict crop yield [5]
vapor pressure deficit (Vpd) of the water demand-related variables was positively correlated with maize yield
Summary
The global demand for the use of agricultural crops as food, feed, and bioenergy will continue to grow in the coming decades [1]. 2021, 13, 146 are complicated and building a fundamental explanatory model that integrates all of these factors has become extremely challenging and difficult [4]. To solve this problem, a variety of methods mainly based on crop growth models and empirical models have been constructed in relevant studies to predict crop yield [5]. Statistical models have been widely used in crop yield estimation [12,13,14]. Machine learning can acquire useful information and uncover hidden features from a variety of training data, which could potentially bring better predictions than traditional statistical approaches [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.