Abstract

Protein 3-hydroxyl-3-methylglutarylation (HMGylation) is newly discovered lysine acylation modification in mitochondrion. The accurate identification of HMGylation sites is the premise and key to further explore the molecular mechanisms of HMGylation. In this study, a novel bioinformatics tool named HMGPred is developed to predict HMGylation sites. Multiple effective features, including amino acid composition, amino acid factors, binary encoding, and the composition of k-spaced amino acid pairs, are integrated to encode HMGylation sites. And F-score feature ranking with incremental feature selection was used to eliminate redundant features. Moreover, a fuzzy support vector machine algorithm is used to effectively reduce the influence of noise problem by assigning different samples to different fuzzy membership degrees. As illustrated by 10-fold cross-validation, HMGPred achieves a satisfactory performance with an area under receiver operating characteristic curve of 0.9110. Feature analysis indicates that some k-spaced amino acid pair features, such as ‘KxxxT’ and ‘DxxxE’, play a critical role in the prediction of HMGylation sites. The results of prediction and analysis might be helpful for investigating the mechanisms of HMGylation. For the convenience of experimental researchers, HMGPred is implemented as a web server at http://123.206.31.171/HMGPred/.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call