Abstract

Mechanical ventilation (MV) is a core therapy in the intensive care unit (ICU). Some patients rely on MV to support breathing. However, it is a difficult therapy to optimise, where inter- and intra- patient variability leads to significantly increased risk of lung damage. Excessive volume and/or pressure can cause volutrauma or barotrauma, resulting in increased length of time on ventilation, length of stay, cost and mortality. Virtual patient modelling has changed care in other areas of ICU medicine, enabling more personalized and optimal care, and have emerged for volume-controlled MV. This research extends this MV virtual patient model into the increasingly more commonly used pressure-controlled MV mode. The simulation methods are extended to use pressure, instead of both volume and flow, as the known input, increasing the output variables to be predicted (flow and its integral, volume). The model and methods are validated using data from N = 14 pressure-control ventilated patients during recruitment maneuvers, with n = 558 prediction tests over changes of PEEP ranging from 2 to 16 cmH2O. Prediction errors for peak inspiratory volume for an increase of 16 cmH2O were 80 [30 - 140] mL (15.9 [8.4 - 31.0]%), with RMS fitting errors of 0.05 [0.03 - 0.12] L. These results show very good prediction accuracy able to guide personalised MV care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.