Abstract

In this paper, taking Block G in Canada as an example, combined with the data of the working area, the Pearson–MIC comprehensive evaluation method was adopted to optimize the key parameters of productivity. Based on the analytic hierarchy process, the weight of each parameter was calculated, the grade of evaluation index of the “sweet spot” was divided, the standard of the sweet spot was established, and the distribution of the superimposed sweet spot was finally depicted. The results show that lateral length, number of stages, volume of fluid, and amount of proppant are the key engineering parameters of horizontal well, and lateral length is an independent key engineering parameter. The cumulative gas production in the first two years was normalized on the lateral length to eliminate the engineering influence, and the total organic carbon (TOC) was finally determined as the key geological parameter, whereas porosity and water saturation were the secondary key parameters. The area of Type I sweet spots accounts for 24.2% in the Series Upper and 23.1% in the Series Lower. This study proposed a new sweet spot prediction idea based on the influence of geological factors on productivity, and its results also laid a foundation for the subsequent placement of horizontal wells in Block G.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call