Abstract

AbstractThe linear viscoelastic properties of polymer melts depend strongly and systematically on the molecular weight distribution. A molecular theory relating dynamic modulus and molecular weight distribution for linear polymers, developed and confirmed earlier with data for three other polymer species, is applied here to commercial samples of isotactic polypropylene and high density polyethylene. Experimental master curves are compared with predictions based on only the fundamental rheological parameters of the species and molecular weight distributions as obtained by the methods of size exclusion chromatography. Agreement is fairly good for the two polypropylene samples, about the same as had been found earlier for the other species, but it is highly variable for the ten polyethylene samples. We attribute this variability to differences among high density polyethylenes in the frequency, length, and type of long‐chain branching. However, we could find surprisingly little supporting evidence for this from such supposed signatures of long branches in polyethylene as the flow activation energy Ea. Measured values of Ea agreed well with the literature results for linear polyethylene; none showed the elevation in Ea that would be expected for polyethylene with long branches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.