Abstract
Landslide prediction is important for mitigating geohazards but is very challenging. In landslide evolution, displacement depends on the local geological conditions and variations in the controlling factors. Such factors have led to the “step-like” deformation of landslides in the Three Gorges Reservoir area of China. Based on displacement monitoring data and the deformation characteristics of the Baishuihe Landslide, an additive time series model was established for landslide displacement prediction. In the model, cumulative displacement was divided into three parts: trend, periodic, and random terms. These terms reflect internal factors (geological environmental, gravity, etc.), external factors (rainfall, reservoir water level, etc.), and random factors (uncertainties). After statistically analyzing the displacement data, a cubic polynomial model was proposed to predict the trend term of displacement. Then, multiple algorithms were used to determine the optimal support vector regression (SVR) model and train and predict the periodic term. The results showed that the landslide displacement values predicted based on data time series and the genetic algorithm (GA-SVR) model are better than those based on grid search (GS-SVR) and particle swarm optimization (PSO-SVR) models. Finally, the random term was accurately predicted by GA-SVR. Therefore, the coupled model based on temporal data series and GA-SVR can be used to predict landslide displacement. Additionally, the GA-SVR model has broad application potential in the prediction of landslide displacement with “step-like” behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.