Abstract

Accurate prediction of landslide displacement is an effective way to reduce the risk of landslide disaster. Under the influence of periodic precipitation and reservoir water level, many landslides in the Three Gorges Reservoir area underwent significant displacement deformation, showing a similar step-like deformation curve. Given the nonlinear characteristics of landslide displacement, a prediction model is established in this study according to the variational mode decomposition (VMD) and support vector regression (SVR) optimized by gray wolf optimizer (GWO-SVR). First, the original data are decomposed into trend, periodic and random components by VMD. Then, appropriate influential factors are selected using the grey relational degree analysis (GRDA) method for constructing the input training data set. Finally, the sum of the three displacement components is superimposed as the total displacement of the landslide, and the feasibility of the model is subsequently tested. Taking the Shuizhuyuan landslide in the Three Gorges Reservoir area as an example, the accuracy of the model is verified using the long time-series monitoring data. The results indicate that the newly proposed model achieves a relatively good prediction accuracy with data decomposition and parameter optimization. Therefore, this model can be used for the predict the accuracy of names and affiliations ion of landslide displacement in the Three Gorges Reservoir area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.