Abstract

<p>Land use and landcover change (LU/LC) are important in global change studies because they can transform the local and global environment by developing the biochemical, biochemical and biogeographic properties of the Earth's structure. This paper is intended to develop Hybrid Convolutional Neural Network (HCNN) for land use and land cover changes prediction in Tiruppur Tamilnadu. Initially, the databases are collected from the open-source system. And the image dataset has been pre-processed using the image augmentation technique. Through which the image has been resized and processed for training it with the proposed mode. The resized images are sent to the HCNN for prediction of land cover and land use changes in Tiruppur Tamilnadu. The proposed classifier is a combination of Convolutional Neural Network (CNN) and Remora Optimization Algorithm (ROA). In the CNN, the ROA is utilized to select the hyper parameters to enable efficient prediction in land use and land cover changes. The proposed classifier is implemented in MATLAB and performances is evaluated by performance metrices such as accuracy, precision, recall, sensitivity, F_Measure and Kappa. The proposed methodology is compared with the conventional techniques such as CNN, Markov chain model and Recurrent Neural Network (RNN) respectively.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.