Abstract

In this study subsidence due to groundwater withdrawal was investigated. Kerman Province in Iran is struggling with land subsidence problem due to extensive groundwater withdrawal mainly for farming. The rate and type of groundwater withdrawal has very important impact on settlement rate. In this research, effective parameters on land subsidence caused by groundwater withdrawal were determined by laboratory tests. Sampling had done up to depth of 300 m mainly with remolded specimens from Shams-abad, Nouq plain in Kerman province. Similar to the field preconsolidation pressure was applied on specimens in the laboratory. Rate of applied stress on prepared specimens was similar to effect of oscillation of groundwater level. In order to model the actual soil behavior in the laboratory, one-dimensional consolidation device (odometer) was adopted for testing. In these tests, the effect of loading caused by seasonal oscillation of groundwater table is considered by means of cyclic loading in the testing which has great effect on rate of settlements. The results of tests show that when the water table level periodically increases and decreases the amount of settlement decrease, comparing with the case when the groundwater table drop to a constant level. In order to predict the further effects of groundwater level oscillation and actual field condition on land subsidence, a finite element model based on Biots’ three-dimensional consolidation theory was developed. After calibration of finite element model with laboratory tests, this model was used for prediction the effect of groundwater level oscillation on actual field conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.