Abstract

AbstractThe stability theory is used to predict jet length from jet inception to disruption for injection of one Newtonian liquid into a second immiscible Newtonian liquid. Knowledge of the length is essential for predicting the size of drops formed from jets. At low velocities jet length is controlled by the amplification of symmetrical waves which travel at the interfacial velocity of the jet. At higher velocities an abrupt lengthening of the jet may occur as a result of drop merging, and the jet length is then controlled by the growth rate of sinuous waves which are strongly velocity dependent. Jet disruption results from a geometrical limitation on the maximum amplitude of the sinuous waves. Predictions show good quantitative agreement with experimental data for thirteen mutually saturated systems over a wide range of variables and qualitative agreement with limited experimental data on the effects of initial disturbance level and mass transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.