Abstract

Voltage-gated ion channels are a diverse family of pharmaceutically important membrane proteins for which limited 3D information is available. A number of virtual screening tools have been used to assist with the discovery of new leads and with the analysis of screening results. One such tool, and the subject of this paper, is binary kernel discrimination (BKD), a machine-learning approach that has recently been applied to applications in chemoinformatics. It uses a training set of compounds, for which both structural and qualitative activity data are known, to produce a model that can then be used to rank another set of compounds in order of likely activity. Here, we report the use of BKD to build models for the prediction of five different ion channel targets using two types of activity data. The results obtained suggest that the approach provides an effective way of prioritizing compounds for acquisition and testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.