Abstract

Herein, using density functional theory, novel two-dimensional (2D) CrInX2 (X = S, Se, Te) structures are predicted to be practical ferromagnetic (FM) semiconductors. Phonon vibrations and molecular dynamics simulations verified their structural and thermodynamic stability. Sizable fully spin-polarized band gaps of 1.03 and 0.69 eV are found for CrInS2 and CrInSe2, while CrInTe2 exhibits half-metallic band nature (at 0 K with a perfect lattice). The high magnetic anisotropy energies are responsible for their long-range spin polarization. The Curie temperatures (Tc) are estimated to be 347, 397 and 447 K for CrInS2, CrInSe2 and CrInTe2, respectively, all well above the room-temperature. The high Tc originates from unusual FM direct exchange, the efficient super-exchange coupling between neighboring Cr eg-orbitals with zero virtual exchange gaps and the presence of dual Cr-X-Cr super-exchange channels. Our systematic study of the CrInX2 monolayer suggests that it could be a promising material for spintronics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call