Abstract

To investigate the prognostic value of the radiomic-based prediction model in predicting the interval growth rate of persistent subsolid nodules (SSNs) with an initial size of ≤ 3 cm manifesting as lung adenocarcinomas. A total of 133 patients (mean age, 59.02 years; male, 37.6%) with 133 SSNs who underwent a series of CT examinations at our hospital between 2012 and 2022 were included in this study. Forty-one radiomic features were extracted from each volumetric region of interest. Radiomic features combined with conventional clinical and semantic parameters were then selected for radiomic-based model building. To investigate the model performance in terms of substantial SSN growth and stage shift growth, the model performance was compared by the area under the curve (AUC) obtained by receiver operating characteristic analysis. The mean follow-up period was 3.62 years. For substantial SSN growth, a radiomic-based model (Model 2) based on clinical characteristics, CT semantic features, and radiomic features yielded an AUCs of 0.869 (95% CI: 0.799-0.922). In comparison with Model 1 (clinical characteristics and CT semantic features), Model 2 performed better than Model 1 for substantial SSN growth (AUC model 1:0.793 versus AUC model 2:0.869, p=0.028). A radiomic-based nomogram combining sex, follow-up period, and three radiomic features was built for substantial SSN growth prediction. For the stage shift growth, a radiomic-based model (Model 4) based on clinical characteristics, CT semantic features, and radiomic features yielded an AUCs of 0.883 (95% CI: 0.815-0.933). Compared with Model 3 (clinical characteristics and CT semantic features), Model 4 performed better than the model 3 for stage shift growth (AUC model 1: 0.769 versus AUC model 2: 0.883, p=0.006). A radiomic-based nomogram combining the initial nodule size, SSN classification, follow-up period, and three radiomic features was built to predict the stage shift growth. Radiomic-based models have superior utility in estimating the prognostic interval growth of patients with early lung adenocarcinomas (≤ 3 cm) than conventional clinical-semantic models in terms of substantial interval growth and stage shift growth, potentially guiding clinical decision-making with follow-up strategies of SSNs in personalized precision medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.