Abstract

The principals of interfacial fracture mechanics and modified Gibbs adsorption equation are utilized to provide a predictive correlation for the macroscopic (effective) fracture toughness of polymer-based adhesive interfaces, exposed to varying level of contaminant concentration. The macroscopic fracture toughness measurement by double cantilever beam test exhibits a progressive deterioration with the increase of the contaminant surface concentration. The associated variation of fracture surface morphology exhibits ductile-to-brittle failure transition, caused by the contamination-induced suppression of plastic deformation within the adhesive layer. The corresponding intrinsic interfacial surface energy is extracted by finite-element simulation, employing surface-based cohesive elements. The modified Gibbs adsorption equation is utilized to correlate the contamination-induced degradation of the interfacial surface energy as a function of contaminant surface concentration. Interfacial fracture mechanics principals are applied to extend the correlation to the macroscopic fracture toughness of the interface. With additional examination of other systems, the proposed correlation may provide the basis for nondestructive evaluation of bond line integrity, exposed to different levels of contaminant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call