Abstract

Ionic liquids (ILs) are a type of potential green solvents, which can be used as a media for reaction and separation. The infinite-dilution activity coefficient is an important parameter to measure the interaction between ILs and solutes. In this work, we proposed a new method to predict infinite-dilution activity coefficients of ILs at different temperatures. A temperature-dependent quantitative structure–property relationship (QSPR) model was developed for a series of organic solutes in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. By using genetic algorithm-variables subset selection (GA-VSS) and ordinary least-square regression (OLS) methods, six variables, including temperature and five significant molecular descriptors, were selected and used to build the temperature-dependent prediction model. The satisfactory results of the internal and external validations proved the reliability, stability and predictive ability of the built model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.