Abstract

The objective of this research was to develop a building thermal analysis and air quality predictive (BTA-AQP) model to predict indoor climate and long-term air quality (NH3, H2S, and CO2 concentrations and emissions) for swine deep-pit buildings. This article presents part II of this research, in which the performance of the BTA-AQP model is evaluated using typical meteorological year (TMY3) data in predicting long-term air quality trends. The good model performance ratings (MAE/SD 0.5 for all the predicted parameters) and the graphical presentations reveal that the BTA-AQP model was able to accurately forecast indoor climate and gas concentrations and emissions for swine deep-pit buildings. By comparing the air quality results simulated by the BTA-AQP model using the TMY3 data set with those from a five-year local weather data set, it was found that the TMY3-based predictions followed the long-term mean patterns well, which indicates that the TMY3 data could be used to represent the long-term expectations of source air quality. Future work is needed to improve the accuracy of the BTA-AQP model in terms of four main sources of error: (1) uncertainties in air quality data, (2) prediction errors of the BTA model, (3) prediction errors of the AQP model, and (4) bias errors of the TMY3 and its limited application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.