Abstract

Brain age is a promising biomarker for predicting chronological age based on brain imaging data. Although movie and resting-state functional MRI techniques have attracted much research interest for the investigation of brain function, whether the 2 different imaging paradigms show similarities and differences in terms of their capabilities and properties for predicting brain age remains largely unexplored. Here, we used movie and resting-state functional MRI data from 528 participants aged from 18 to 87years old in the Cambridge Centre for Ageing and Neuroscience data set for functional network construction and further used elastic net for age prediction model building. The connectivity properties of movie and resting-state functional MRI were evaluated based on the connections supporting predictive model building. We found comparable predictive abilities of movie and resting-state connectivity in estimating brain age of individuals, as evidenced by correlation coefficients of 0.868 and 0.862 between actual and predicted age, respectively. Despite some similarities, notable differences in connectivity properties were observed between the predictive models using movie and resting-state functional MRI data, primarily involving components of the default mode network. Our results highlight that both movie and resting-state functional MRI are effective and promising techniques for predicting brain age. Leveraging its data acquisition advantages, such as improved child and patient compliance resulting in reduced motion artifacts, movie functional MRI is emerging as an important paradigm for studying brain function in pediatric and clinical populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call