Abstract
Targeting ischemic strokes patients at risk of incident atrial fibrillation (AF) for prolonged cardiac monitoring and oral anticoagulation remains a challenge. Clinical risk scores have been developed to predict post-stroke AF with suboptimal performances. Machine learning (ML) models are developing in the field of AF prediction and may be used to discriminate post-stroke patients at risk of new onset AF. This study aimed to evaluate ML models for the prediction of AF and to compare predictive ability to usual clinical scores. Based on a French nationwide cohort of 240,459 ischemic stroke patients without AF at baseline from 2009 to 2012, ML models were trained on a train set and the best model was selected to be evaluate on the test set. Discrimination of the best model was evaluated using the C index. We finally compared our best model with previously described clinical scores. During a mean follow-up of 7.9 ± 11.5months, 14,095 patients (mean age 77.6 ± 10.6; 50.3% female) developed incident AF. After training, the best ML model selected was a deep neural network with a C index of 0.77 (95% CI 0.76-0.78) on the test set. Compared to traditional clinical scores, the selected model was statistically significantly superior to the CHA2DS2-VASc score, Framingham risk score, HAVOC score and C2HEST score (P < 0.0001). The ability to predict AF was improved as shown by net reclassification index increase (P < 0.0001) and decision curve analysis. ML algorithms predict incident AF post-stroke with a better ability than previously developed clinical scores. AF: atrial fibrillation; DNN: deep neural network; IS: ischemic stroke; KNN: K-nearest neighbors; LR: logistic regression; RFC: random forest classifier; XGBoost: extreme gradient boosting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.