Abstract

Traffic of off-road vehicles can disturb soil, decrease vegetation development, and increase soil erosion. Terrain impacts caused by wheeled off-road vehicles were studied in this paper. Models were developed to predict terrain impacts caused by wheeled vehicles in terms of disturbed width and impact severity. Disturbed width and impact severity are not only controlled by vehicle types and vehicle dimensions, but also influenced by soil conditions and vehicle dynamic properties (turning radius, velocity). Field tests of an eight-wheeled vehicle and a four-wheeled vehicle were conducted to test these models. Field data of terrain–vehicle interactions in different vehicle dynamic conditions were collected. Vehicle dynamic properties were derived from a global position system (GPS) based tracking system. The average prediction percentage error of the theoretical disturbed width model is less than 20%. The average absolute error between the predicted impact severity and the measured value is less than an impact severity value of 12%. These models can be used to predict terrain impacts caused by off-road wheeled vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call