Abstract
The lightweight racket with handle-light configuration and large head size is recent tendency of high-tech tennis rackets, increasing power or post-impact ball velocity with an increasing racket swing speed. This paper investigated the performance of lightweight tennis racket with super-large head size in terms of feel or comfort. It predicted the effect of the mass and mass distribution of super-large sized rackets on the impact shock vibrations of the racket handle and the player's wrist joint when a player hits a flat forehand drive. The prediction is based on the identification of the racket characteristics, the damping of the racket-arm system, equivalent mass of the player's arm system and the approximate nonlinear impact analysis in tennis. A super-light weight balanced racket (mass: 292 g, the center of gravity LG: 363 mm from the butt end) and a conventional weight and weight balanced racket (349 g, LG: 323 mm) are selected as representatives. They are the super-large sized rackets made of carbon graphite with a head size of 120 square inches and the same geometry. The result showed that the shock vibration of the super-light weight balanced racket with super-large sized head is much larger than that of the conventional weight balanced type racket. It also showed that the sweet area of the former in terms of the shock vibration shifts from the center to the topside on the racket face compared to the latter. This is because the location of the grip on the racket handle is further from the location of the node on the handle of the first mode of super-light racket than that of the conventional weight racket.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.