Abstract

Our innate immune system recognizes a foreign RNA sequence of a pathogen and activates the immune system to eliminate the pathogen from our body. This immunomodulatory potential of RNA can be used to design RNA-based immunotherapy and vaccine adjuvants. In case of siRNA-based therapy, the immunomodulatory effect of an RNA sequence is unwanted as it may cause immunotoxicity. Thus, we developed a method for designing a single-stranded RNA (ssRNA) sequence with desired immunomodulatory potentials, for designing RNA-based therapeutics, immunotherapy and vaccine adjuvants. The dataset used for training and testing our models consists of 602 experimentally verified immunomodulatory oligoribonucleotides (IMORNs) that are ssRNA sequences of length 17 to 27 nucleotides and 520 circulating miRNAs as non-immunomodulatory sequences. We developed prediction models using various features that include composition-based features, binary profile, selected features, and hybrid features. All models were evaluated using five-fold cross-validation and external validation techniques; achieving a maximum mean Matthews Correlation Coefficient (MCC) of 0.86 with 93% accuracy. We identified motifs using MERCI software and observed the abundance of adenine (A) in motifs. Based on the above study, we developed a web server, imRNA, comprising of various modules important for designing RNA-based therapeutics (http://crdd.osdd.net/raghava/imrna/).

Highlights

  • Our innate immune system recognizes a foreign RNA sequence of a pathogen and activates the immune system to eliminate the pathogen from our body

  • The first category is that of membrane-bound receptors that includes the Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), while the second category is composed of the cytoplasmic sensors, for example, NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and a growing list of cytosolic nucleic acid sensors[4] (23846113)

  • This study showed that the mammalian innate immune system can detect microbial viability by virtue of the viability-associated pathogen-associated molecular patterns (PAMPs) present in the pathogen and recognized prokaryotic mRNA as a vita-PAMP

Read more

Summary

Introduction

Our innate immune system recognizes a foreign RNA sequence of a pathogen and activates the immune system to eliminate the pathogen from our body. This immunomodulatory potential of RNA can be used to design RNA-based immunotherapy and vaccine adjuvants. We developed a method for designing a single-stranded RNA (ssRNA) sequence with desired immunomodulatory potentials, for designing RNA-based therapeutics, immunotherapy and vaccine adjuvants. In case of a few viral infections, cellular defense system recognizes the pathogen from its RNA sequence. This study showed that the mammalian innate immune system can detect microbial viability by virtue of the viability-associated PAMPs (vita-PAMPs) present in the pathogen and recognized prokaryotic mRNA as a vita-PAMP. Another study demonstrates the concomitance of immunostimulatory property of RNA with AU-richness in the sequence[12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call