Abstract

The immune microenvironment (IME) is closely associated with prognosis and therapeutic response of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). Multi-parametric magnetic resonance imaging (MRI) enables non-invasive assessment of IME and predicts prognosis in HBV-HCC. We aimed to construct an MRI prediction model of the immunocyte-infiltration subtypes and explore its prognostic significance. HBV-HCC patients at the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China) with radical surgery (between 1 October and 30 December 2021) were prospectively enrolled. Patients with pathologically proven HCC (between 1 December 2013 and 30 October 2019) were retrospectively enrolled. Pearson correlation analysis was used to examine the relationship between the immunocyte-infiltration counts and MRI parameters. An MRI prediction model of immunocyte-infiltration subtypes was constructed in prospective cohort. Kaplan-Meier survival analysis was used to analyse its prognostic significance in the retrospective cohort. Twenty-four patients were prospectively enrolled to construct the MRI prediction model. Eighty-nine patients were retrospectively enrolled to determine its prognostic significance. MRI parameters (relative enhancement, ratio of the apparent diffusion coefficient value of tumoral region to peritumoral region [rADC], T1 value) correlated significantly with the immunocyte-infiltration counts (leukocytes, T help cells, PD1+Tc cells, B lymphocytes). rADC differed significantly between high and low immunocyte-infiltration groups (1.47 ± 0.36 vs 1.09 ± 0.25, P = 0.009). The area under the curve of the MRI model was 0.787 (95% confidence interval 0.587-0.987). Based on the MRI model, the recurrence-free time was longer in the high immunocyte-infiltration group than in the low immunocyte-infiltration group (P = 0.026). MRI is a non-invasive method for assessing the IME and immunocyte-infiltration subtypes, and predicting prognosis in post-operative HBV-HCC patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.