Abstract

A new way of modeling imbibition is proposed in this paper. It combines two elements. One is a physically consistent, dynamic criterion for the imbibition of an individual pore originally suggested by Melrose (SPEJ (November 1965) 259–271). The other is the use of a simple but physically representative model of porous media: a dense random packing of spheres that is geometrically predetermined. This approach allows truly a priori predictions of imbibition curves (saturation vs capillary pressure) for different values of contact angle, different initial conditions (e.g., different drainage endpoints), and different macroscopic sample geometries (the ratio of external to internal pores). It also provides a mechanistic basis for understanding the influence of pore-scale phenomena such as “snap-off” of nonwetting phase in the pore throats due to the coalescence of pendular rings. The simulations show that the capillary pressure curve for this unconsolidated packing is very sensitive to the wettability parameters (such as contact angle), whereas the influence of different initial conditions and snap-off is almost negligible. Predicted capillary pressure curves are compared to experimental data presented in the literature, and are consistent with them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.