Abstract

AbstractHydrologic variability is a fundamental driver of ecological processes and species distribution patterns within river systems, yet the paucity of gauges in many catchments means that streamflow data are often unavailable for ecological survey sites. Filling this data gap is an important challenge in hydroecological research. To address this gap, we first test the ability to spatially extrapolate hydrologic metrics calculated from gauged streamflow data to ungauged sites as a function of stream distance and catchment area. Second, we examine the ability of statistical models to predict flow regime metrics based on climate and catchment physiographic variables. Our assessment focused on Australia's largest catchment, the Murray‐Darling Basin (MDB). We found that hydrologic metrics were predictable only between sites within ∼25 km of one another. Beyond this, correlations between sites declined quickly. We found less than 40% of fish survey sites from a recent basin‐wide monitoring program (n = 777 sites) to fall within this 25 km range, thereby greatly limiting the ability to utilize gauge data for direct spatial transposition of hydrologic metrics to biological survey sites. In contrast, statistical model‐based transposition proved effective in predicting ecologically relevant aspects of the flow regime (including metrics describing central tendency, high‐ and low‐flows intermittency, seasonality, and variability) across the entire gauge network (median R2 ∼ 0.54, range 0.39–0.94). Modeled hydrologic metrics thus offer a useful alternative to empirical data when examining biological survey data from ungauged sites. More widespread use of these statistical tools and modeled metrics could expand our understanding of flow‐ecology relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.