Abstract

Under the dual-carbon target, hydrogen energy, as a zero-carbon secondary energy source, has great scope for replacing fossil feedstocks in the fields of energy, transportation and industry. However, the current research on the competitiveness of hydrogen energy in various fields is not sufficiently addressed. In this paper, we use the LEAP model to predict the future scale of hydrogen use and the two-factor learning curve to predict the trend of hydrogen price change from 2025 to 2050, using Qinghai Province as the research background. At the same time, considering the carbon emission reduction benefits and raw material costs, the competitiveness of hydrogen energy in energy, transportation, industry and other fields in the future is compared. The results show that: 1) The hydrogen load scale in Qinghai Province will grow fast from 2025 to 2030. From 2030 to 2040, it slows under the steady and basic scenarios but remains high under the accelerated one. By 2040, the consumption scales are 1.057 million, 649,000 and 442,000 tons respectively. 2) The price of hydrogen energy will drop rapidly from the current 28 CNY/kg to about 20 CNY/kg in the next 5 years. By 2040, the price of hydrogen energy will be reduced to about 17 CNY/kg. 3) In terms of hydrogen energy competitiveness, when carbon emissions are not taken into account, hydrogen energy is currently competitive in the transportation field. During 2032–2038, it will be competitive in the field of methanol synthesis. By 2040, hydrogen energy will not be competitive in the fields of ammonia synthesis and power/heating. When considering carbon emissions, the competitiveness of hydrogen energy in the transportation field will become greater. The competitive year in the field of methanol synthesis will be 1–2 years ahead. By 2040, it will not be competitive in the field of synthetic ammonia and power/heating, but the gap will be significantly reduced due to the consideration of carbon emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.