Abstract
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput is affected by convective weather in the vicinity of the airport and how to predict short-term airport operational throughput have not been well studied. Convective weather near the airport could make arrivals miss their positions in the arrival stream and reduce airfield efficiency in terms of the utilization of runway capacities. This research leverages the learning-based method (MB-ResNet model) to predict airport hourly throughput and takes Hartsfield–Jackson Atlanta International Airport (ATL) as the case study to demonstrate the developed method. To indicate convective weather, this research uses Rapid Refresh model (RAP) data from the National Oceanic and Atmospheric Administration (NOAA). Although it is a comprehensive and powerful weather data product, RAP has not been widely used in aviation research. This study demonstrated that RAP data, after being carefully decoded, cleaned, and pre-processed, can play a significant role in explaining airfield efficiency variation. Applying machine learning/deep learning in air traffic management is an area worthy of the attention of aviation researchers. Such advanced artificial intelligence techniques can make use of big data from the aviation sector and improve the predictability of the national airspace system and, consequently, operational efficiency. The short-term airport operational throughput predicted in this study can be used by air traffic controllers and airport managers for the allocations of resources at airports to improve airport operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.