Abstract

Inhibition of human immunodeficiency virus 1 (HIV-1) protease is an important strategy for the treatment of HIV and acquired immune deficiency syndrome (AIDS). Therefore, HIV-1 protease inhibitory activity of dihydropyranone derivatives has been analyzed with different physico-chemical parameters. In the present work, QSAR studies were performed on a series of 4-hydroxy-5,6-dihydropyran-2-ones to explore the physico-chemical parameters responsible for their HIV-1 protease inhibitory activity. Physico-chemical parameters were calculated using WIN CAChe 6.1. Stepwise multiple linear regression analysis was performed to derive QSAR models which were further evaluated for statistical significance and predictive power by internal and external validation. The selected best QSAR model was having correlation coefficient (R) = 0.875 and cross-validated squared correlation coefficient (Q2) = 0.707. The developed significant QSAR model indicates that hydrophobicity of whole molecule and the substituent present at sixth position of dihydropyranones play an important role in the HIV-1 protease inhibitory activities of 4-hydroxy-5,6-dihydropyran-2-ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.