Abstract

To develop a radiomics-based model from preoperative magnetic resonance imaging (MRI) for predicting the histopathological grades of myxofibrosarcoma. This retrospective study included 54 patients. The tumors were classified into high-grade and low-grade myxofibrosarcoma. The tumor size, signal intensity heterogeneity, margin, and surrounding tissue were evaluated on MRI. Using the least absolute shrinkage and selection operator (LASSO) algorithms, 1037 radiomics features were obtained from fat-suppressed T2-weighted images (T2WI), and a radiomics signature was established. Using multivariable logistic regression analysis, three models were built to predict the histopathologic grade of myxofibrosarcoma. A radiomics nomogram represents the integrative model. The three models' performance was evaluated using the receiver operating characteristics (ROC) and calibration curves. The high-grade myxofibrosarcoma had greater depth (P = 0.027), more frequent heterogeneous signal intensity at T2WI (P = 0.015), and tail sign (P = 0.014) than the low-grade tumor. The area under curve (AUC) of these conventional MRI features models was 0.648, 0.656, and 0.668, respectively. Seven radiomic features were selected by LASSO to construct the radiomics signature model, with an AUC of 0.791. The AUC of the integrative model based on radiomics signature and conventional MRI features was 0.875. The integrative model's calibration curve and insignificant Hosmer-Lemeshow test statistic (P = 0.606) revealed good calibration. An integrative model using radiomics signature and three conventional MRI features can preoperatively predict low- or high-grade myxofibrosarcoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call