Abstract
Land Surface Temperature (LST) with high spatio-temporal resolution is in demand for hydrology, climate change, ecology, urban climate and environmental studies, etc. Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most commonly used sensors owing to its high spatial and temporal availability over the globe, but is incapable of providing LST data under cloudy conditions, resulting in gaps in the data. In contrast, microwave measurements have a capability to penetrate under clouds. The current study proposes a methodology by exploring this property to predict high spatio-temporal resolution LST under cloudy conditions during daytime and nighttime without employing in-situ LST measurements. To achieve this, Artificial Neural Networks (ANNs) based models are employed for different land cover classes, utilizing Microwave Polarization Difference Index (MPDI) at finer resolution with ancillary data. MPDI was derived using resampled (from 0.25° to 1km) brightness temperatures (Tb) at 36.5GHz channel of dual polarization from Advance Microwave Scanning Radiometer (AMSR)-Earth Observing System and AMSR2 sensors. The proposed methodology is tested over Cauvery basin in India and the performance of the model is quantitatively evaluated through performance measures such as correlation coefficient (r), Nash Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE). Results revealed that during daytime, AMSR-E(AMSR2) derived LST under clear sky conditions corresponds well with MODIS LST resulting in values of r ranging from 0.76(0.78) to 0.90(0.96), RMSE from 1.76(1.86)K to 4.34(4.00)K and NSE from 0.58(0.61) to 0.81(0.90) for different land cover classes. During nighttime, r values ranged from 0.76(0.56) to 0.87(0.90), RMSE from 1.71(1.70)K to 2.43(2.12)K and NSE from 0.43(0.28) to 0.80(0.81) for different land cover classes. RMSE values found between predicted LST and MODIS LST during daytime under clear sky conditions were within acceptable limits. Under cloudy conditions, results of microwave derived LST were evaluated with air temperature (Ta) and indicate that the approach performed well with RMSE values lesser than the results obtained under clear sky conditions for land cover classes for both day and nighttimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.