Abstract
The difficulties in determining the compressive strength of concrete are inherited due to the various nonlinearities rooted in the mix designs. These difficulties raise dramatically considering the modern mix designs of high-performance concrete. Presents study tries to define a simple approach to link the input ingredients of concrete with the resulted compressive with a high accuracy rate and overcome the existing nonlinearity. For this purpose, the radial base function is defined to carry out the modeling process. The optimal results were obtained by determining the optimal structure of radial base function neural networks. This task was handled well with two precise optimization algorithms, namely Henry’s gas solubility algorithm and particle swarm optimization algorithm. The results defined both models’ best performance earned in the training section. Considering the root mean square error values, the best value stood at 2.5629 for the radial base neural network optimized by Henry’s gas solubility algorithm, whereas the same value for the the radial base neural network optimized by particle swarm optimization was 2.6583 although both hybrid models provided acceptable output results, the radial base neural network optimized by Henry’s gas solubility algorithm showed higher accuracy in predicting high performance concrete compressive strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.