Abstract
This study proposes a method of predicting hemolysis induced by turbulent shear stress (Reynolds stress) in a simplified orifice pipe flow. In developing centrifugal blood pumps, there has been a serious problem with hemolysis at the impeller or casing edge; because of flow separation and turbulence in these regions. In the present study, hemolysis caused by turbulent shear stress must occur at high shear stress levels in regions near the edge of an orifice pipe flow. We have computed turbulent shear flow using the low-Reynolds number k -ε model. We found that the computed turbulent shear stress near the edge was several hundreds times that of the laminar shear stress (molecular shear stress). The peak turbulent shear stress is much greater than that obtained in conventional hemolysis testing using a viscometer apparatus. Thus, these high turbulent shear stresses should not be ignored in estimating hemolysis in this blood flow. Using an integrated power by shear force, it is optimimal to determine the threshold of the turbulent shear stress by comparing computed stress levels with those of hemolysis experiments of pipe orifice blood flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.