Abstract

Abstract14,000 data sets from an industrialized bainitization process, consisting of process gas furnace, salt bath and circulating air furnace, were used to predict the resulting Vickers hardness of cylinder heads made of 100Cr6 based on process data such as temperature and pressure. For prediction, machine learning methods such as ANNs, CNNs, ensemble methods and support vector regressors were compared. Meta features such as the furnace number as well as features extracted from the recorded time series were used. Data preparation and feature extraction were performed according to the machine learning methods used. The random forest achieved the best predictions with an R2 score of 0.406 and also allows the evaluation of the most important features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.