Abstract

Obtaining accurate basic parameters for long hole blasting is challenging, and the resulting vibration damage significantly impacts key surface facilities. Predicting ground vibration velocity accurately and mitigating the harmful effects of blasting are crucial aspects of controlled blasting technology. This study focuses on the prediction of ground vibration velocity induced by underground long hole blasting tests. Utilizing the fitting equation based on the US Bureau of Mines (USBM) formula as a baseline for predicting peak particle velocity, two machine learning models suitable for small sample data, Support Vector Regression (SVR) machine and Random Forest (RF), were employed. The models were optimized using the particle swarm optimization algorithm (PSO) to predict peak particle velocity with multiple parameters specific to long hole blasting. Mean absolute error (MAE), mean Squared error (MSE), and coefficient of determination (R2) were used to assess the model predictions. Compared with the fitting equation based on the USBM model, both the Support Vector Regression (SVR) and Random Forest (RF) models accurately and effectively predict peak particle velocity, enhancing prediction accuracy and efficiency. The SVR model exhibited slightly superior predictive performance compared to the RF model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call