Abstract

In this paper, a novel neuro-fuzzy learning machine called randomized adaptive neuro-fuzzy inference system (RANFIS) is proposed for predicting the parameters of ground motion associated with seismic signals. This advanced learning machine integrates the explicit knowledge of the fuzzy systems with the learning capabilities of neural networks, as in the case of conventional adaptive neuro-fuzzy inference system (ANFIS). In RANFIS, to accelerate the learning speed without compromising the generalization capability, the fuzzy layer parameters are not tuned. The three time domain ground motion parameters which are predicted by the model are peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD). The model is developed using the database released by PEER (Pacific Earthquake Engineering Research Center). Each ground motion parameter is related to mainly to four seismic parameters, namely earthquake magnitude, faulting mechanism, source to site distance and average soil shear wave velocity. The experimental results validate the improved performance of the machine, with lesser computation time compared to prior studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.