Abstract
This study compares the accuracy of different forecasting techniques for gold and silver returns in a leading emerging economy. The study employs four forecasting models: autoregressive integrated moving average (ARIMA), artificial neural network (ANN), hybrid, and ensemble models. The study takes data of more than 7 years and forecasting is carried out for different forecast horizons varying from 1- to 20-steps ahead. The results reveal that ARIMA model is the best model to predict the gold returns, whereas, the ANN model along with the ensemble model are the best to predict the silver returns. The results also indicate that there exists nonlinear patterns in the time-series data of gold and silver returns. The study has significant implications for investors, academia, and policymakers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.