Abstract

In order to evaluate human carcinogenic risks, genotoxicity data such as animal cancer bioassay are often not available. In this study, to assess the relevance of indicator of carcinogenic risks, we used the "molecular diversity approach" to estimate the genotoxicity based upon Salmonella genotoxicity test using the umu test and systemic toxicity data of the 82 environmental chemicals predicted by neural network simulation. The 82 environmental chemicals were randomly selected for this study according to the production and usage in Japan. Even in this challenging trial for QSTR (Quantitative Structure Toxicity Relationship) study, approaches using artificial neural networks can account for about 94% of the variation in the genotoxicity results derived by the umu-test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.