Abstract

As the number of sequenced genomes increases, the ability to deduce genome function becomes increasingly salient. For many genome sequences, the only annotation that will be available for the foreseeable future will be based on computational predictions and comparisons with functional elements in related species. Here we discuss computational approaches for automated genome-wide annotation of functional elements in mammalian genomes. These include methods for ab initio and comparative gene-structure predictions. Gene features such as intron splice sites, 3' untranslated regions, promoters, and cis-regulatory elements are discussed, as is a novel method for predicting DNaseI hypersensitive sites. Recent methodologies for predicting noncoding RNA genes, including microRNA genes and their targets, are also reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.