Abstract
The formation of gas hydrates due to temperature and pressure changes during gas storage in the wellbore poses significant danger, necessitating the prediction of temperature and pressure distribution as well as of hydrate formation locations. We establish a temperature model that couples total thermal resistance and temperature in the wellbore-stratum composite medium system. Utilizing the two-phase pressure model alongside the temperature model, we conduct coupling calculations of temperature and pressure. Based on both temperature and pressure distribution within the wellbore and hydrate formation curve, we predict hydrate formation regions during production and analyze factors influencing temperature and pressure distribution. Results indicate that gas production rate and specific gravity of natural gas are major influencers on wellbore temperature and pressure distribution, while production time has minimal impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.