Abstract

BackgroundFinite element analysis (FEA) of the proximal femur has been previously validated with large mesh size, but these were insufficient to simulate the model with small implants in recent studies. This study aimed to validate the proximal femoral computed tomography (CT)-based specimen-specific FEA model with smaller mesh size using fresh frozen cadavers.MethodsTwenty proximal femora from 10 cadavers (mean age, 87.1 years) were examined. CT was performed on all specimens with a calibration phantom. Nonlinear FEA prediction with stance configuration was performed using Mechanical Finder (mesh,1.5 mm tetrahedral elements; shell thickness, 0.2 mm; Poisson’s coefficient, 0.3), in comparison with mechanical testing. Force was applied at a fixed vertical displacement rate, and the magnitude of the applied load and displacement were continuously recorded. The fracture load and stiffness were calculated from force–displacement curve, and the correlation between mechanical testing and FEA prediction was examined.ResultsA pilot study with one femur revealed that the equations proposed by Keller for vertebra were the most reproducible for calculating Young’s modulus and the yield stress of elements of the proximal femur. There was a good linear correlation between fracture loads of mechanical testing and FEA prediction (R2 = 0.6187) and between the stiffness of mechanical testing and FEA prediction (R2 = 0.5499). There was a good linear correlation between fracture load and stiffness (R2 = 0.6345) in mechanical testing and an excellent correlation between these (R2 = 0.9240) in FEA prediction.ConclusionsCT-based specimen-specific FEA model of the proximal femur with small element size was validated using fresh frozen cadavers. The equations proposed by Keller for vertebra were found to be the most reproducible for the proximal femur in elderly people.

Highlights

  • Finite element analysis (FEA) of the proximal femur has been previously validated with large mesh size, but these were insufficient to simulate the model with small implants in recent studies

  • Proximal femoral neck fracture is a major cause of high morbidity and mortality in elderly people with osteoporosis [1, 2]

  • This study aimed to document a proximal femoral FEA model using fresh frozen cadavers with smaller mesh size and to verify the accuracy of FEA prediction using computed tomography (CT)-based specimen-specific FEA compared with mechanical testing

Read more

Summary

Introduction

Finite element analysis (FEA) of the proximal femur has been previously validated with large mesh size, but these were insufficient to simulate the model with small implants in recent studies. This study aimed to validate the proximal femoral computed tomography (CT)-based specimen-specific FEA model with smaller mesh size using fresh frozen cadavers. CT-based finite element analysis (FEA) can account for various aspects of the bone, such as bone geometry, cortical and trabecular bone distribution, and loading direction, and can improve the predictive accuracy of bone strength. The first validation study was conducted by Keyak et al [12], and several studies have reported the accuracy and usefulness of CT-based FEA of the proximal femur in the stance configuration [13,14,15,16,17]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call