Abstract

Hot stamping of ultra-high strength steels possesses many superior characteristics over conventional room temperature forming process and is fairly attractive in improving strength and reducing weight of vehicle body product. However, the mechanical and failure behavior of hot stamping boron steel 22MnB5 are both strongly affected by strain hardening, temperature, strain rate, and microstructure. In this paper, the material yield and flow behavior of 22MnB5 within the temperature and strain rate range of hot stamping are described by an advanced anisotropic yield criterion combined with two different hardening laws. The elevated temperature forming limit diagram (ET-FLD) is constructed using the M-K theoretical analysis. The developed model was validated by comparing our predicted result with experimental data in the literature under isothermal conditions. Based on the verified model, the influence of temperature and strain rate on the forming limit curve for 22MnB5 steel under equilibrium isothermal condition are discussed. Furthermore, the transient forming limit diagram is developed by performing a transient forming process simulation under non-isothermal transient condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call