Abstract

Warm stamping techniques have been employed to solve the formability problem in forming aluminium alloy panels. The formability of sheet metal is a crucial measure of its ability for forming complex-shaped panel components and is often evaluated by forming limit diagram (FLD). Although the forming limit is a simple tool to predict the formability of material, determining FLD experimentally at warm/hot forming condition is quite difficult. This paper presents the artificial neural network (ANN) modelling of the process based on experimental results (different temperature, 20°C-300°C and different forming rates, 5-300 mm.s-1) is introduced to predict FLDs. It is shown that the ANN can predict the FLDs at extreme conditions, which are out of the defined boundaries for training the ANN. According to comparisons, there is a good agreement between experimental and neural network results

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.